Александрийская ученость

Евклид, представитель математической школы в Александрии, оставил по себе, сверх знаменитых геометрических книг, несколько сочинений по физике, относительно которых существует сомнение, вполне ли они подложны или же только снабжены позднейшими прибавлениями. Из них «Гармоника» представляет незначительный интерес, зато «Оптика», трактат по теории перспективы (скенографии), а еще более «Катоптрика»[24] сделались краеугольными камнями соответствующих отделов физики, хотя не были чужды ошибок.

В своей «Оптике» Евклид придерживался учения Платона о зрительных лучах, исходящих из глаза. С другой стороны, он дает верное определение зависимости кажущейся величины предмета от угла зрения, хотя и здесь впадает в ошибку, полагая, что величина обусловливается исключительно углом зрения. Относящиеся сюда положения евклидовой «Оптики» следующие: лучи, выходящие из глаза, распространяются по прямым линиям на некотором расстоянии друг от друга. Фигура, описываемая зрительными лучами, имеет форму конуса, вершина которого лежит в глазу, а основание – на границе видимого предмета. Предметы, рассматриваемые под одинаковым углом зрения, кажутся равными по величине.

«Катоптрика» Евклида не сохранилась, приписываемый этому автору текст был, по-видимому, позднейшей компиляцией. Она заключает в себе следующее основное положение: если зеркало лежит в горизонтальной плоскости, на которой отвесно стоит предмет, то для линий, проведенных между глазом и зеркалом, с одной стороны, между предметом и зеркалом – с другой, получается то же отношение, которое существует между высотами глаза и предмета. Из этого положения вытекает закон отражения: зеркала плоские, выпуклые и вогнутые отражают падающие лучи под равными углами, причем изображение и предмет лежат в плоскости, перпендикулярной к плоскости зеркала. Для сферических зеркал Евклид справедливо доказывает еще, что лучи, отражающиеся от вогнутых зеркал, могут быть сходящимися и расходящимися, от выпуклых же – только расходящимися. Евклид формулирует ошибочную теорему: фокус вогнутого зеркала находится или в центре его шаровой поверхности, или между этим центром и зеркалом.

Евклида можно признать основоположником учения о прямолинейном распространении света и законов отражения, двух существенных положений геометрической оптики, ведь его законы отражения превратили все проблемы отражения лучей в чисто математические задачи. Для Евклида оптика представляла только математический интерес, поэтому для него было не очень важно, идет ли луч света из глаза к предмету или же наоборот.

Вероятно, затем это сочинение было оттеснено на второй план более объемной «Катоптрикой» Архимеда (также утерянной), содержавшей строгое изложение всех достижений греческой геометрической оптики.

Перейдем же к Архимеду. Его биография, как и некоторых других ученых той поры, подробно прописана.

Считается, что он был другом и родственником царя Гиерона, правившего Сиракузами, но принимал участие в общественных делах лишь своими физическими познаниями и своей изобретательностью. Научные исследования поглощали его до такой степени, что ему приходилось напоминать про еду и питье и силой отправлять в купальню, где он во время растираний продолжал чертить геометрические фигуры на песке.

А вот сказка из книг Витрувия: царь Гиерон хотел пожертвовать в храм золотой венец и велел отвесить мастеру надлежащее количество золота. Мастер представил венец, но ходили слухи, будто он заменил часть золота серебром. Архимед, которому царь поручил расследовать это дело, долго думал над решением вопроса, пока наконец оно не возникло в его уме внезапно в то время, как он сидел в ванне. Вне себя от радости он выскочил из воды и раздетый побежал по улицам Сиракуз, повторяя знаменитое «эврика» («нашел») согражданам, смотревшим на него с понятным удивлением.

Оказывается, Архимед додумался опустить в сосуд, наполненный водой, слиток золота, равный по весу венцу, и нашел, что он вытесняет воды меньше, нежели последний. При повторении опыта со слитком серебра получилось обратное. Таким путем не только был доказан обман вообще, но и удалось определить, сколько именно золота было заменено серебром.

Об Архимеде рассказывают вообще много чудес. Такова басня о корабле, над которым в течение полугода трудилось 300 рабочих и который, будучи обложен свинцовыми листами для защиты от червей, оказался настолько тяжелым, что не мог быть снят со стапелей. Архимед при помощи своих машин легко стащил его в море один. Другой большой военный корабль был приведен им к берегу посредством рычагов, канатов и блоков. Ему приписывают фразу, сказанную Гиерону: «Дай мне точку опоры, и я подниму землю».

Рассказывают, что, когда Сиракузы подверглись преследованию римлян, он создал ряд машин. При их помощи на римлян, осаждавших город, сыпался такой град стрел и камней, что войско бежало, лишь завидев на вершине стены канат или столб. Осаждавшим с моря приходилось еще хуже: как только они приближались к стене, сверху спускалась железная лапа (крюк на цепи, прикрепленный к столбу), хватала корабль за носовую часть и держала его отвесно, пока экипаж и вооружение не сваливались в море, а затем бросала, причем корабль мгновенно тонул. Подобные сказки рассказывает Плутарх, а за ним Ливий и Полибий. Все это наглядное доказательство того, до какой степени ненаучно и некритически писались тексты в Средние века.

Еще одна общеизвестная басня возникла, по-видимому, в XII веке. Она приписывает Архимеду сожжение неприятельского флота посредством вогнутых зеркал, которыми он с высоты стен собирал солнечные лучи и направлял на римские корабли. Многие физики старались найти какое-нибудь разумное основание для этого предания, но безуспешно. Еще в XVII веке патер Кирхер считал такую вещь возможной, потому что ему самому удалось получить значительное повышение температуры на расстоянии 30 метров комбинацией из пяти плоских зеркал. Бюффону удалось зажечь доску, намазанную дегтем, на расстоянии 100 метров при помощи установки 168 зеркал. Однако по отношению к флоту подобный эксперимент не имел бы успеха уже потому, что корабль в случае подобной опасности не остался бы неподвижным на месте. Возможно, что в основу этого мифа легли рассказы о позднейшем применении в морских сражениях сосудов с горящей зажигательной смесью (нефтью).

Даже в XV веке зеркала стоили огромных денег. Обычные плоские зеркала из стекла. Делать сферические, да еще с заданным заранее фокусом не могли. Металлические в традиционное время Архимеда тоже были бы слишком дороги, и та же неразрешимая задача: как задать изделию нужную сферичность?

Родного города Архимеду, однако, отстоять не удалось, были у него зеркала или нет. Мало того, при занятии Сиракуз он попался на глаза какому-то римскому солдату и был убит. Но на этом чудеса не кончаются. Оказывается, сиракузяне о таком знаменитом земляке ничего не знали, пока им не рассказал о нем приехавший на остров через 137 лет после его смерти квестор Цицерон. Ему пришлось лично разыскать и указать неблагодарным потомкам могилу гения. Достойное завершение сказок об Архимеде.

Основные сочинения Архимеда, относящиеся к физике – «О равновесии плоскостей» и «О плавающих телах».

Трактат «О равновесии плоскостей» исходит из принятого положения, что равные по весу величины, действующие на одинаковых расстояниях, находятся в равновесии. Отсюда вытекает другое положение: если две равные по весу величины не имеют общего центра тяжести, то центр тяжести величины, полученный от сложения обеих, будет лежать посередине прямой, соединяющей центры тяжести обеих величин. При помощи этих положений Архимед доказывает справедливость закона рычага. Именно: если к рычагу привешены два груза, то на основании второго положения можно разделить каждый груз на 2, 4, 8 равных частей и привесить их попарно в равных расстояниях от первоначальных точек привеса, не нарушая действия. Если же первоначальные два груза имеют массу обратно пропорциональную их расстояниям от точки опоры рычага, то отдельные части грузов могут быть распределены по обоим плечам рычага таким образом, что на обоих будет находиться равное число грузов на попарно равных расстояниях, откуда следует, что система находится и, следовательно, раньше должна была находиться в равновесии. Это доказательство возбуждало много возражений, но тем не менее оно очень долго не заменялось каким-либо другим, более строгим.

Сочинение «О плавающих телах» основано на положениях, что жидкость во всех частях однородна и непрерывна и что во всякой жидкости менее сжатая часть смещается другой, более сжатой; наконец, что всякая часть жидкости претерпевает давление от лежащей отвесно над нею жидкости. Отсюда выводится, что поверхность покоящейся жидкости должна иметь сферическую форму, концентрическую с поверхностью земли; что тело, которое легче жидкости, погружается в нее до тех пор, пока вес тела не сравняется с весом вытесненной жидкости. Что тело, насильственно погруженное в жидкость, всплывает с силою, равной избытку веса жидкости над весом тела. И наконец, что тело более тяжелое, чем жидкость, погружается в нее совсем и теряет вес, равный весу вытесненной жидкости. Вслед за этим наиболее знаменитым из своих положений Архимед высказывает новую гипотезу: «Все тела, вытесняемые жидкостью кверху, двигаются по отвесной линии, проходящей через их центр тяжести».

По свидетельству Плутарха, сам Архимед считал свои практические изобретения ничтожными по сравнению с теоретическими работами. В дошедших до нас сочинениях он следует чисто математическому методу; ко всем физическим основам относится как к простым гипотезам, никогда не объясняя, каким образом он пришел к ним. Архимеду приписывали 40 механических изобретений, большинство которых осталось неизвестным, так как сам он о них не упоминает. А известны: зажигательное зеркало, водоподъемный винт, бесконечный винт, полиспаст[25] и чрезвычайно сложный планетарий. Последний якобы наглядно представлял движение планет вокруг Земли, причем простым поворотом рукоятки Солнце, Луна и планеты приводились в движение вокруг Земли, вращаясь сравнительно правильно, с соблюдением всех соотношений периодов, и получалось даже затмение Солнца Луной.

А видел планетарий тот самый Цицерон, который после ознакомления с этим механизмом пришел к убеждению, что Архимед обладал гением, почти несовместимым с человеческой природой. Кроме Цицерона никто этого планетария не видел, а мы и в XXI веке не знаем такого механизма, чтобы простым поворотом рукоятки можно было воспроизвести движение планет.

Архимед не основал никакой школы и имел весьма мало непосредственных преемников. В глазах современников он был каким-то божеством, которому поклонялись, но по следам которого никто не решался идти. И тут можно согласиться со словами Плутарха:

«Во всей геометрии нельзя найти теорем более трудных и глубоких, чем те, которые Архимед решает самым простым и наглядным образом. Одни приписывают эту ясность его гениальному уму, другие – упорной работе, при которой самые трудные вещи делаются легкими. На взгляд, кажется, невозможно придумать объяснения ни для одной из теорем Архимеда, но, когда прочтешь данное им решение, кажется, будто найти его ничего не стоило, до того оно легко и просто».

Еще двое знаменитых механиков – Ктесибий и его ученик Герон жили в Александрии. Оба успешно занимались физическими исследованиями и интересовались наукой не только с теоретической, но и с практической стороны. Ктесибию приписывают изобретение духового ружья и нагнетательного насоса. Его водяные часы замечательны тем, что при описании их впервые упоминается о зубчатых колесах. Система колес приводилась в движение корабликом, плавающим на поднимающейся поверхности воды, и роняла камешки в металлический тазик, указывая число часов. Собственно водяные часы, конечно, не были изобретением Ктесибия. Витрувий, якобы со слов Герона, описывает еще и водяной орган Ктесибия, но так сбивчиво, что нет возможности уяснить себе его механизм.

Герон тоже занимался изготовлением водяных часов, но прославился главным образом пневматическими машинами, которые он подробно описывает в своем сочинении «Пневматика». К таким машинам принадлежит геронов фонтан, геронов шар, паровой волчок и эолипил, который он приводил в движение то паром, то нагретым воздухом. Из этого ясно, что Герон знал о расширении воздуха и искусно умел пользоваться его упругостью, однако нигде не заметно, чтобы он подвинул вперед механику газов. Важнее в теоретическом отношении его сочинение «О домкрате», действие которого он выводит из закона рычага. Его математические сочинения погибли, в том числе и «Начала механики».

Трактат Герона «Катоптрика», ранее принимавшийся за сочинение Птолемея, содержит ряд новых моментов по сравнению с одноименными работами Евклида и Архимеда. В нем Герон обосновывает прямолинейность световых лучей бесконечно большой скоростью их распространения. Он приводит доказательство закона отражения, основываясь на предположении, что путь, проходимый светом, должен быть наименьшим из всех возможных; это частный случай принципа, обычно связываемого с именем Ферма.

Вслед за законом отражения Герон рассматривает различные типы зеркал, особое внимание уделяя цилиндрическим зеркалам. В заключение в трактате приводятся примеры применения зеркал, в том числе для театральных представлений. В другом трактате – «О диоптре», Герон описывает универсальный визирный инструмент диоптру (как назвал его автор), сочетавший функции позднейших теодолита и секстанта. Наводка диоптры осуществлялась путем вращения вокруг двух осей, вертикальной и горизонтальной. Для более точной установки служил микрометрический винт, впервые описанный именно в этом сочинении. А это автоматически делает его более поздним произведением, так как изготовление столь тонкого устройства еще долго было невозможным.

Со времен Герона все ученые стали разделять оптику на катоптрику, то есть науку об отражении, и диоптрику, науку об изменении направления световых лучей при попадании в прозрачные среды, например воду или стекло, или, как мы теперь говорим, о преломлении. Явление преломления еще не рассматривалось Героном.

Другое сочинение Герона – «О строении метательных снарядов», употреблявшихся в его время, написано не в научном тоне, а популярно, для понимания широкими массами.

Филону Византийскому приписывают сочинение о строении баллист и катапульт. Из его трактата о механике, посвященного тем же вопросам, что и сочинения Герона, уцелело только несколько цитат, приведенных Паппом.

Клеомед, в общем, мало известный писатель. Он интересен тем, что в его сочинении мы находим замечательные оптические наблюдения, связанные, по всей вероятности, с его астрономическими исследованиями. Он не только знает, что луч при переходе из менее плотной среды в более плотную и наоборот преломляется, но и что в первом случае отклоненный луч приближается к перпендикуляру, а во втором удаляется от него. Он описывает следующий опыт: нужно встать так, чтобы кольцо, положенное на дно сосуда, скрылось за его краями; затем, не изменяя положения глаз, достаточно налить в сосуд воды, чтобы все кольцо стало видным. Из этого опыта Клеомед выводит, что вследствие преломления лучей мы видим солнце, уже зашедшее за горизонт.

Клавдий Птолемей – фигура легендарная. Его авторитет может конкурировать только с авторитетом Аристотеля. Византийцы, арабы, жители Западной Европы относились к нему с одинаковым уважением, и, когда его авторитет начал колебаться, римская церковь старалась отстоять его всем своим могуществом.

Своей громкой славой Птоломей был обязан обширному астрономическому труду «Великое математическое построение в астрономии», в тринадцати книгах которого содержатся все достижения византийской астрономии. Император Фридрих II, король Сицилии (1194–1250), почитатель арабской учености, приказал перевести это сочинение с арабского на латинский язык, и хотя позднее оно было переведено прямо с греческого, но при этом сохранило арабское название «Альмагест». Для того чтобы согласовать видимое движение планет, Птолемею пришлось создать такие сложные теории их движения, что он сам, как бы извиняясь, замечает: «Легче, кажется, двигать самые планеты, чем постичь их сложное движение». Эта-то сложность и была в конце концов причиной падения системы мира Птолемея. Правда, сегодня есть мнение, что ее творцом был Гиппарх.

Как в «Альмагесте» Птолемея собраны все современные ему астрономические знания, так в его трактате по оптике – все оптические знания, причем считается, что Птолемей дополнил их самостоятельными исследованиями. В начале XVII века об «Оптике» упоминают как об общеизвестной книге. Затем она исчезает из обращения, и только в 1800 году Лаплас открывает ее в парижской библиотеке в виде латинского перевода с арабского. В ней разбирается теория зрения, отражение света, теория плоских и сферических зеркал и, наконец, преломление света. Интереснее и важнее прочих последняя часть. Птолемей, правда, не знает закона преломления, считая углы падения и преломления пропорциональными в одинаковых средах, но все же довольно точно измеряет углы, образуемые падающим и преломленным лучом с перпендикуляром для воздуха и воды, воздуха и стекла, стекла и воды.

Вопреки Аристотелю, Птолемей, подобно Евклиду, считает, что лучи исходят из глаза. По-видимому, спор об этом предмете должен был казаться ему бесцельным, тем более что математическая форма оптических законов остается неизменной, будут ли прямолинейные световые лучи исходить из глаза или из предмета.

Но были те, кому этот вопрос был важен. Например, Дамиан, сын Гелиодора Ларисского, говорит в своей «Оптике»:

«Очертание наших глаз – не имеющих полой структуры и не похожих на другие органы, приспособленные для восприятия извне, – а также их сферическая поверхность доказывают, что свет исходит из них. Дальнейшими доказательствами служит блеск глаз и способность некоторых людей видеть ночью без наружного освещения».

Или: «Распространение глазного и солнечного света до крайних пределов небосвода происходит мгновенно. Подобно тому, как мы видим солнце, затемненное облаком, в самый момент удаления облака, так же мгновенно видим небо, когда поднимаем глаза наши кверху».

Законы преломления представляли для Птолемея особый интерес, так как он заметил, что место светил изменяется вследствие преломления лучей в воздухе. Хотя он не измерял астрономической рефракции, но все же видел ясно, что она в зените равна нулю и постепенно возрастает по направлению к горизонту. В преломлении он полагал причину того, что околополюсные звезды описывают с виду не настоящие, а сплющенные круги вокруг полюсов.

В его трактате о гармонических звуках содержится мало нового и важного в физическом отношении, хотя эти книги весьма ценны для понимания греческой музыки.

Папп, один из последних александрийских математиков, оставил в своих восьми книгах «Математического сборника» замечательные работы по механике. О том, что математические исследования по вопросу о центре тяжести тел не прекратились окончательно после Архимеда, видно из закона, который изложен Паппом в седьмой книге сборника как самостоятельное его исследование. Закон этот впоследствии был вновь открыт Гульденом и назван его именем. Фигуры, описываемые вращением линии или площади вокруг данной оси, находятся в сложном отношении к вращающимся фигурам и путям, описываемым их центрами тяжести.

В восьмой книге Папп впервые различает пять так называемых основных машин – рычаг, клин, винт, блок и ворот – и приводит рисунок полиспаста. Ему не удается вывести действия наклонной плоскости из закона рычага главным образом потому, что он не умеет отличить действия трения от действия тяжести. Но при тогдашнем положении науки о движении этих сведений и нельзя было иметь. Исходя из того факта, что нужна уже некоторая сила, чтобы двигать тело по горизонтальной плоскости, и что сила эта должна возрастать по мере увеличения наклона последней, Папп старается вычислить, насколько сила, двигающая тело по наклонной плоскости, должна быть больше силы, двигающей его по горизонтальной. Он обошел бы эти затруднения, если бы задался вопросом: какая часть веса тела нужна для того, чтобы удержать тело на наклонной плоскости? В этой форме, однако, вопрос поставил позднее Кардан, не найдя, впрочем, точного решения.

Мы можем отнести Паппа ко временам царствования византийского императора Феодосия I на основании показаний византийского лексикографа Свиды (X век).

О Прокле (412–485)[26] сообщают, что он, подобно Архимеду, сжег римские корабли при осаде Константинополя посредством вогнутых зеркал. Из других его достижений – попытки научными доводами объяснить влияние небесных светил на судьбу живых существ.

Антемий, строитель знаменитого византийского собора в Константинополе (VI век), доказывает, что зажигательные зеркала воспламеняют предметы только вследствие способности собирать множество солнечных лучей в одну точку; и далее, что лучи, выходящие из одной точки, соединяются снова в одну точку лишь при условии эллиптической формы зеркальной поверхности. Он не верил, чтобы Архимед мог зажечь римский флот при помощи сферического зеркала, но пробовал зажигать отдаленные предметы сложной системой плоских зеркал. О Прокле, который был почти его современником, он не упоминает.

Про Антемия рассказывают, будто бы он поставил в своем погребе паровые котлы и посредством труб подвел пар под дом ненавистного ему соседа, римлянина Зенона. Встряска была такой сильной, что Зенон подумал, будто его дом рушится от землетрясения.

Два слова о так называемой римской науке. Сами историки отмечали, что среди ее представителей не было людей Рима. И они ее определяют как науку эпохи Римской империи, созданную учеными, писавшими на греческом языке; римлян же среди них не было. Чем же она отличается от византийской науки?