Будущее экспериментальной науки

„Вряд ли можно сомневаться, что в будущем все более и более значительная часть закономерностей окружающего нас мира будет познаваться и использоваться автоматическими помощниками человека. Но столь же несомненно и то, что все наиболее важное в процессах мышления и познания всегда будет уделом человека. Справедливость этого вывода обусловлена исторически.

„Рука“ робота, управляемая ЭВМ

…Человечество не представляет собой простую сумму людей. Интеллектуальная и физическая мощь человечества определяется не только суммой человеческих мускулов и мозга, но и всеми созданными им материальными и духовными ценностями. В этом смысле никакая машина и никакая совокупность машин, являясь в конечном счете продуктом коллективной деятельности людей, не могут быть „умнее“ человечества в целом, ибо при таком сравнении на одну чашу весов кладется машина, а на другую — все человечество вместе с созданной им техникой, включающей, разумеется, и рассматриваемую машину.

Следует отметить также, что человеку исторически всегда будет принадлежать окончательная оценка интеллектуальных, равно как и материальных ценностей, в том числе и тех ценностей, которые создаются машинами, так что и в этом смысле машина никогда не сможет превзойти человека.

Таким образом, можно сделать вывод, что в чисто информационном плане кибернетические машины не только могут, но и обязательно должны превзойти человека, а в ряде пока еще относительно узких областей они делают это уже сегодня. Но в плане социально-историческом эти машины есть и всегда останутся не более чем помощниками и орудиями человека“. (В.М. Глушков. Мышление и кибернетика//Вопр. философии. — 1963. № 1).

Автоматизация научных исследований начиналась с автоматизации измерений и обработки полученной информации. Это мы делали еще в начале 60-х годок на расстоянии обрабатывали данные, поступавшие из Атлантического океана. Наличие управляющей машины „Днепр“ с устройством связи с объектом УСО позволило нам раньше американцев осуществить автоматизацию эксперимента в Академии наук Украины. Американцы использовали для этой цели КАМАК — более совершенные технические средства, созданные в 1967 году, тогда как УСО „Днепра“ было разработано в 1961 году. Председателем Совета по автоматизации научных исследований, организованного в 1972 году при Президиуме АН Украины, был назначен Б.Н. Малиновский. Я как вице-президент курировал этот совет, а также совет по вычислительной технике, руководимый А.А. Стогнием, и совет по АСУ президиума, возглавляемый B.C. Михалевичем.

Было решено силами академических институтов разработать автоматизированные проблемно-ориентированные лаборатории АПОЛ, включающие комплекс измерительных средств, ЭВМ и программы обработки измерений. Сейчас один завод выпускает рентгеновские аппараты, другой — спектроанализаторы, третий — вычислительную машину, четвертый — КАМАК и т. п. Это, конечно, не индустриальный подход, и такими темпами мы науку не автоматизируем до конца XXI столетия. Мы наметили пять-шесть АПОЛ, готовим необходимую техническую документацию и решаем вопрос о серийном производстве. В частности речь идет о лаборатории для рентгеноструктурного анализа, лаборатории масс-спектрографий и еще о целом ряде лабораторий, которые используются в химии, физике и биологии. Есть договоренность с заводом „Точэлектроприбор“ что они возьмут на себя выпуск таких лабораторий. Тогда Академия наук, заказав их, будет делать только шеф-монтаж. Конечно, для какого-нибудь уникального эксперимента установку придется собрать самим ученым. Но это должно быть исключением, а не правилом. А правилом должно быть осуществление промышленностью шеф-монтажа. Малиновского это сразу увлекло, и он включился в полную силу, а работать он умеет, надо отдать ему должное.

В программно-технических комплексах и проблемных лабораториях должны занять и занимают свое место микрокомпьютеры. — Часть обработки данных эксперимента должна производиться на месте с помощью встроенного в прибор микрокомпьютера, остальная — на миникомпьютере, и лишь в случае необходимости можно выходить на большой компьютер. Например, для обработки результатов сложных ядерных экспериментов мы подключаем машину БЭСМ-6 (или ЕС-1060) на нашем вычислительном центре через радиоканал шириной 96 кГц, а рядом с экспериментальной установкой находится миникомпьютер, обрабатывающий результаты экспериментов.

Большинство экспериментов не ограничивается сбором и обработкой данных. Наиболее трудной частью является настройка экспериментальной установки. Например, для термоядерного лазерного реактора, который разрабатывает академик Н.Г. Басов, результаты эксперимента обрабатываются на ЭВМ за сутки, а на настройку установки тратится полгода, поскольку она должна быть очень точной. Поэтому важно решить и такую задачу, как компьютерная настройка приборов. Для этого следует применять роботы, которые также должны входить в программно-технический комплекс. Потому что, когда делается рентге-ноструктурный анализ кристалла в геохимии, то кристалл следует поворачивать, изменять его положение по отношению к пучку рентгеновского излучения, перемещать и т. п. Это все пока довольно долго делает экспериментатор. А в будущем программно-техническом комплексе такие операции должны выполняться автоматически. В противном случае, если обработка результатов занимает половину времени, то ни при какой автоматизации мы не можем ускорить эксперимент больше чем вдвое. К сожалению, многие этого не понимают.

Не понимают, как всегда, потому, что американцы до этого только-только доходят. Они начнут понимать через пять-восемь лет после того, как это появится в США, такой у них стиль работы.

Усилиями наших инженеров в Институте проблем прочности АН Украины автоматизированы испытания на механическую усталость: здесь, по-видимому, будет создана первая проблемно-ориентированная лаборатория для многих механических испытаний. В Институте геологии и геофизики, а также в Институте проблем онкологии АН Украины мы также сделали ряд работ.

С автоматизацией физических исследований тесно связана автоматизация испытаний сложных промышленных объектов. Этим занимаются В.И. Скурихин и А.Г. Корниенко. Корниенко делает работу для флота, а Скурихин, А.А. Морозов и П.М. Сиверский — для авиации. Когда президент АН СССР А.П. Александров наши результаты увидел, он вначале не поверил. Пришлось показать систему, разработанную Корниенко, установленную на одном из кораблей и имеющую 1200 каналов съема информации.

В подготовленной всесоюзной целевой программе по автоматизации научных исследований, испытаний сложных объектов и автоматизации проектно-конструкторских работ наш институт официально намечается головным. Постановление еще не было, когда я лег в больницу. (Позднее оно вышло. — Прим. авт.) Есть еще одно направление в этой работе, смыкающееся с роботами. Сейчас сборка и укрепление датчиков делаются вручную. Нужен еще такой микроробот, который мог бы все это делать. Такая задача поставлена мной на будущее. Здесь неограниченный простор для исследований, потому что в качестве конечной цели видится автоматизированная система развития науки и техники в целом, когда ЭВМ сами делают эксперименты, настраивают экспериментальную установку, могут спроектировать новую, получают результаты, обрабатывают их, строят теории, проверяют правильность старых теорий и в случае необходимости выходят на построение новых.

В последующем мыслится разработка алгоритмов дедуктивных построений, чтобы машина не только обрабатывала результаты, но и проверяла гипотезы и строила на основе этого теории, т. е. выдавала готовую печатную продукцию сначала в диалоговом режиме, а потом и самостоятельно. Такова дальнейшая программа работ в области автоматизации научных исследований.

И, наконец, системы автоматизации проектирования (САПР). Мы вычленили отдельно задачу автоматизации проектирования ЭВМ, потому что это полностью наша задача. А в остальном проектировании — в строительстве, машиностроении и т. д., алгоритмы делаем не мы, а соответствующие институты, а мы создаем программно-технические комплексы. Мы сделали две такие системы: одну для строителей в Киеве в Институте экспериментального зонального проектирования, другую (закрытую) в Ленинграде. Система автоматизации проектирования строительных работ получилась хорошая: изготавливаются полностью автоматически чертежи, проектная и сметная документация и пр. Этим занимаются Скурихин и Морозов. Эти и другие работы привели к появлению новых направлений — сети ЭВМ и банки данных. Сетями у нас занимаются А.Н. Никулин и А.И. Никитин, а банками данных — Ф.И. Андон и А.А. Стогний.

Что касается сетей, то мы первыми в мире высказали эту идею, первыми осуществили передачу информации для ЭВМ на большие расстояния, и если не сеть, то, во всяком случае, удаленные терминалы сделали раньше всех (при „океанском“ эксперименте, когда ЭВМ „Киев“ обрабатывала информацию, полученную с научно-исследовательского судна).

И мы же сделали первый в мире эскизный проект сети ЭВМ — Единой Государственной сети ВЦ (ЕГС ВЦ), который в полной мере в настоящий момент не реализован еще нигде. Этот проект был сделан мной совместно с Н.Н. Федоренко в 1962–1964 годах по указанию лично председателя Совета Министров СССР Косыгина и был направлен в правительство. Создание такой сети позволяет собирать и оптимальным образом использовать экономическую, научно-техническую и любую другую информацию, а также обмениваться ею в интересах потребителей, что очень важно в наше время перехода к информационному обществу.

x